
Innovativity in Modeling and Analytics Journal of Research

vol. 1, 2016, pp.34-44,
http://imajor.info/

c©iMAJOR
ISSN XXXX-XXXX

Iteratively computing the stabilizing solution of

the discrete time Riccati equation with an

indefinite quadratic part

Ivelin G. Ivanov

College of Dobrich, Shoumen University
Shoumen, Bulgaria

iwelin.ivanow@gmail.com

Abstract. The problem of computation of the stabilizing solution of a class of
discrete-time Riccati equation with an indefinite sign of the quadratic term. Two
iterative methods are considered and numerically compared. The performances of
the proposed algorithm are illustrated on some numerical examples and Python im-
plementations are commented. We apply Anaconda with Python 2.7 which includes
the fundamental packages for scientific computing.

KeyWords: Discrete-time Riccati equations, H∞ problem, stabilizing solution,
Python implementations.

1 Introduction

We consider the problem for solving a class of discrete-time Riccati equation with an in-
definite sign of the quadratic term. The motivation behind this problematic is that such
equation is closely related to the so called full information H∞ control of discrete-time
systems. More specifically, we will consider some reliable procedures for numerical compu-
tation of the stabilizing solution of such an equation. The so called stabilizing solution of
discrete-time systems has a crucial role in solving a linear quadratic optimal control problem
on infinite time horizon. This is due to non definiteness (of the sign) of the quadratic term
of the considered Riccati equations, making most of the existing methods in the literature
(which are built on the assumption of definite sign of the quadratic term) useless. The
considered iterative methods can be viewed as an extension of the results in [2, 3, 1] for the
deterministic continuous-time time-invariant case.

2 Two iterative methods

Consider the following discrete time Riccati equation (DTRE):

X = R(X) := ATXA− (AT X B + CTD)

×
[
Rγ +BTXB

]−1
(AT X B + CTD)T + CTC ,

(1)

34

http://imajor.info/

iMAJOR, vol. 1, 2016 35

where A ∈ Rn×n, B = (B1 B2), Bi ∈ Rn×mi , C ∈ Rp×n, D = (D1 D2), Di ∈

Rp×mi , i = 1, 2, Rγ = DT D +

(
−γ2Im1 0

0 0

)
∈ Rm×m, m = m1 + m2, γ > 0 is a given

scalar.
In our investigation we are interested by all solutions X satisfying equation (1) and the

following two sign conditions:

DT
2D2 +BT

2 XB2 > 0 ,

DT
1D1 +BT

1 XB1 − (BT
1 XB2 +DT

1D2)

×
[
BT

2 XB2 +DT
2 D2

]−1
(BT

1 XB2 +DT
1D2)

T − γ2Im1 < 0 .

(2)

Following [6] we can formulate a definition for the stabilizing solution to (1):

Definition 1 A solution X̃ is called stabilizing solution, if the zero state equilibrium of
the discrete - time linear system on Rn:

x(t+ 1) = [A+BF̃]x(t) (3)

is exponentially stable, where

F̃ = −[Rγ +BT X̃B]−1 [BT X̃A+DTC] . (4)

The stabilizing solution of DTRE (1) is important to find the solution of H∞ control
problem. This problem associated to the discrete - time linear system:

x(t+ 1) = A(t)x(t) +B1(t)w(t) +B2(t)u(t) (5)

and the cost functional

J(w(·), u(·)) =
∞∑

t=−∞

(
‖C(t)x(t) +D1(t)w(t) +D2(t)u(t)‖2 − γ2‖w(t)‖2

)
(6)

with level of attenuation γ. Here u(·) ∈ Rm2 are the control parameters and w(·) ∈
`2(Z,Rm1) model the exogenous disturbances whose effect should be attenuated [6]

In this paper we consider and numerically compare two iterative procedures for the
numerical computation of the stabilizing solution X̃ of (1). These methods are introduced
in [6] and they extend to the discrete-time time-varying case the method developed in [1]
for the deterministic continuous-time time - invariant case and in [2] for the stochastic
continuous-time case.

The first iterative method constructs two matrix sequences of positive semidefinite ma-
trices {X(k)}∞k=0, {Z(k)}∞k=0. We takeX(0) = 0 and thenX(k+1) = X(k)+Z(k) k = 0, 1, 2
Each iteration consists in the computation of the stabilizing solution of a suitable DTRE
with defined sign of its quadratic part. The proposed algorithm may be described in the
following steps:

Step 0. We compute Z(0) as the stabilizing solution of the DTRE:

Z(0) = ATZ(0)A− (ATZ(0)B2 + CTD2)

×
[
BT

2 Z
(0)B2 +DT

2D2

]−1
(ATZ(0)B2 + CTD2)

T + CTC .
(7)

iMAJOR, vol. 1, 2016 36

Step k. (k ≥ 1). We take X(k) = Z(k−1)+X(k−1) and compute Z(k)(·) as the stabilizing
solution of the DTRE with defined sign:

Z(k) = (A+BF (k))TZ(k)(A+BF (k))− ((A+BF (k))TZ(k)B2)

×
[
R

(k)
2 +B2Z

(k)B2

]−1
((A+BF (k))TZ(k)B2)

T +M (k)
(8)

where 

R
(k)
2 = DT

2D2 +BT
2 X

(k)B2(t) ,

F (k) = −
[
Rγ +BTX(k)B

]−1
(BTX(k)A+DTC) ,

M (k) = ATX(k)A− (ATX(k)B + CTD)

×
[
Rγ +BX(k)B

]−1
(ATX(k)B + CTD)T + CTC −X(k)

(9)

Following iteration (9) derived in [9] we build an internal iterative process to compute
Z(k), k = 1, 2, . . ., where a discrete Lyapunov equation is solved at each iteration step.

The main iterative process stops with ‖X(k0) −R(X(k0))‖ ≤ tol.
Theorem 3.1 [6] proves the convergence of the matrix sequence defined by (7) - (9) to

the stabilizing solution to (1).

We consider the second iterative method presented by (15) in [5]:

X(k+1) = (A(k))TX(k+1)(A(k))− ((A(k))TX(k+1)B2 + (C(k))TD2)

×
[
DT

2D2 +BT
2 X

(k+1)B2

]−1
((A(k))TX(k+1)B2 + (C(k))TD2)

T +Q(k)
(10)

where

A(k) = A+B1F1,X(k) ,

C(k) = C +D1F1,X(k) ,

F̃2,X(k+1) = −(DT
2D2 +BT

2 X
(k+1)B2)

−1(A(k)TX(k+1)B2 + C(k)TD2)
T ,

Q(k) = C(k)TC(k) − γ2F T
1,X(k) F1,X(k) .

(11)

Theorem 3.2 [5] proves the convergence of the matrix sequence defined by (10) - (11)
to the stabilizing solution to (1).

In order to compute the solution X(k+1) to (10) Dragan et.al. have proposed the
iteration (40) with notations (41)-(42) from [5]. Using the approach introduced by Ivanov
in [9] we derive the following identity for each symmetric matrix W :

X(k+1) = (A(k) +B2F̃2,W)TX(k+1)(A(k) +B2F̃2,W) + T2,W,X(k)

−(F̃2,X(k+1) − F̃2,W)T
[
DT

2D2 +BT
2 X

(k+1)B2

]
(F̃2,X(k+1) − F̃2,W) ,

(12)

with

T2,W,X(k) =

(
In
F̃2,W

)T (
Q(k) C(k)TD2

DT
2 C

(k) DT
2D2

) (
In
F̃2,W

)
. (13)

iMAJOR, vol. 1, 2016 37

The validity of identity 12 is confirmed by direct manipulations. Using identity 12 we ob-
tain an iterative process to compute X(k+1). We construct a matrix sequence Y (0), Y (1), . . . ,
Y (s), . . . and Y (s+1) is a solution of the matrix equation:

Y (s+1) = (A(k) +B2F̃2,Y (s))TY (s+1)(A(k) +B2F̃2,Y (s)) + T2,Y (s),X(k)) . (14)

It is easy to verify that if the matrix sequence {Y (s)} is a convergent one, then it converges
to X(k+1). In fact (14) is the iteration (40) from [5]. The convergence properties of (14) is
derived in [9].

Further on, we apply the Larin algorithm described in [11] for computing the stabilizing
solution to (1). However, we slightly modify this algorithm in this paper. The algorithm
begins with the consideration of the matrix pencil M − µF to find the stabilizing solution
to (1), where M and F are 2n× 2n block matrices

M =

(
A−BW−1(BTA+NT) 0

NW−1(BTA+NT)−Q I

)
, F =

(
I −BW−1BT BW−1BT

NW−1BT A−NW−1BT

)

with 
W = R+BTB

N = CT D

Q = CT C

.

The Hamiltonian matrix is determined by Cayley transformation on the matrix pencil
M − µF :

H = (M − F)−1 (M + F) =

(
U −T

−G −UT

)
. (15)

The algebraic Riccati equation

Y U + UTY − Y TY +G = 0 (16)

corresponds to the Hamiltonian matrix H. The stabilizing solution to (16) is the required
solution to (1).

Now, we explain our modification. We transform the matrix H in the Schur form S or
the diagonal matrix D as is described in [7]

H E = E S , (H V = V D) .

Note that the above transformation is a similarity transformation, i.e. V −1H V = D. This
transformation can be done via a QR algorithm [8]. Since H is a Hamiltonian matrix then
there exits a permutation matrix such that D̃ = P DP = diag[Ũ ,−Ũ] , (P ∗P = I) , where
Ũ contains n eigenvalues of H with negative real parts,i.e. Ũ is a stable matrix. Thus

V −1H V = D = P D̃ P

or
Ṽ −1H Ṽ = D̃ = diag[Ũ ,−Ũ] , Ṽ = V P. (17)

iMAJOR, vol. 1, 2016 38

The columns of the matrix Ṽ =

(
Ṽ11 Ṽ12

Ṽ21 Ṽ22

)
, (Ṽ11 is an n × n matrix) are the eigen-

vectors corresponding to eigenvalues of D̃. Thus

(
Ṽ11

Ṽ21

)
is an invariant linear subspace

for the matrix H. Thus, XS = Ṽ21 Ṽ
−1
11 is the stabilizing solution to (16) and moreover the

stabilizing solution to (1).
We can summarize the above as follows:
Algorithm 3.
1. Compute matrices 2n× 2n matrices M,N .
2. Compute the Hamiltonian matrix H defined by (15).
3. Compute the eigen factorization of H (17).
4. Compute the stabilizing solution XS = Ṽ21 Ṽ

−1
11 of (16).

Moreover, there are two weakness- Algorithm 3 uses matrices with 2 times bigger di-
mensions and it works in complex arithmetic. It needs to compute eigen factorization (17)
in general case, i.e. this factorization is executed in complex arithmetic because the matrix
H has usually complex eigenvalues.

3 Numerical experiments

We carry out some numerical experiments for computing the stabilizing solution to discrete
time Riccati equation (1). We operate with the iterative methods - the first one is presented
by (7) - (9) and the second one is given by (10) - (11), and Algorithm 3.

Continuum Analytics [12] offers the Python dsitribution through Anaconda. Python is
an object-oriented and high-level programming language with dynamic semantics. Python is
free and open source. One can found the common scientific Python packages and many ones
related to data analytics [10]. The Anaconda is a free distribution with hundreds of cross-
platform tested and optimized packages for Mac OS X, Windows, and Linux users. There
are free licenses for academics and researchers. Fundamental array processing possibilities
are provided by the NumPy library. Our experiments are executed in Anaconda with
Python 2.7 on a 2,16GHz Intel(R) Duo CPU computer.

Here we describe how to implement the considered methods in Python. Iterative method
(7) - (9) is implemented by the following Python function:

def DTRE−IQP−3(a,b1,b2,d1,d2,c,gam,n,tol,eps):
d=np.concatenate((d1, d2),axis=1)
b=np.concatenate((b1, b2),axis=1)
X0=0*np.identity(n); Z0=2*np.identity(n)
for j in range(0, 4):

Fz=-inv(d2.T*d2 + b2.T*Z0*b2)
Fz=Fz*(b2.T*Z0*a + d2.T*c)
tA=a+b2*Fz
Tz=c.T*c + Fz.T*d2.T*c+c.T*d2*Fz+Fz.T*d2.T*d2*Fz
Z0=tA.T*Z0*tA+Tz

X0=X0 + Z0

iMAJOR, vol. 1, 2016 39

y0=np.concatenate((-gam*gam*np.identity(2), 0*np.identity(2)),axis=1)
y1=np.concatenate((0*np.identity(2), 0*np.identity(2)),axis=1)
Rg0=d.T*d+np.concatenate((y0, y1))
errE=1; k=0;
while errE > tol :

Zk= 2*np.identity(n)
Fk0=-inv(Rg0+b.T*X0*b)*(b.T*X0*a+d.T*c)
Ak=a+b*Fk0
thatR2=d2.T*d2+b2.T*X0*b2
SM0=a.T*X0*b+c.T*d
hatM0=a.T*X0*a-SM0*inv(Rg0+b.T*X0*b)*SM0.T+c.T*c-X0;
j=0; errZ=1;
while errZ > eps:

Sk=Ak.T*Zk*b2
FFz=-inv(thatR2+b2.T*Zk*b2)*Sk.T
ttA=Ak+b2*FFz
TTz=hatM0 + FFz.T*thatR2*FFz
discrete−lyapunov
ttA’*Zk*ttA - Zk + TTz = 0
Zk=linalg.solve−discrete−lyapunov(ttA.T, TTz)
Sk=Ak.T*Zk*b2
rezRR=Ak.T*Zk*Ak-Sk*inv(thatR2+b2.T*Zk*b2)*Sk.T+hatM0-Zk
errZ=linalg.norm(rezRR)
j=j+1
end while

X0=X0 + Zk
S0=a.T*X0*b+c.T*d
rezX0=X0-a.T*X0*a+S0*inv(Rg0+b.T*X0*b)*S0.T-c.T*c
errE=linalg.norm(rezX0)
k=k+1

end while
return X0

Iterative method (10) - (11) is implemented by the following Python function:
def DTRE−IQP−4(a,b1,b2,d1,d2,c,gam,n,tol,eps):

d=np.concatenate((d1, d2),axis=1)
b=np.concatenate((b1, b2),axis=1)
y0=np.concatenate((-gam*gam*np.identity(2), 0*np.identity(2)),axis=1)
y1=np.concatenate((0*np.identity(2), 0*np.identity(2)),axis=1)
Rg0=d.T*d+np.concatenate((y0, y1))
X0=0*np.identity(n); errE=1; j=0;
while errE > tol :

Fk0=-inv(Rg0+b.T*X0*b)*(b.T*X0*a+d.T*c)
Fk10=Fk0[0:2,:]

iMAJOR, vol. 1, 2016 40

Ak=a+b1*Fk10
Ck=c+d1*Fk10
Qk=Ck.T*Ck-gam*gam*Fk10.T*Fk10
#
Yk=2*np.identity(n)
i=0; errZ=1;
internal iteration (14)
while errZ > eps:

thatR2=d2.T*d2+b2.T*Yk*b2
FFy=-inv(thatR2)*(Ak.T*Yk*b2+Ck.T*d2).T
ttA=Ak+b2*FFy
TTy=Qk + FFy.T*d2.T*Ck + Ck.T*d2*FFy + FFy.T*d2.T*d2*FFy
discrete−lyapunov
ttA’*Yk*ttA - Yk + TTy = 0
Yk=linalg.solve−discrete−lyapunov(ttA.T, TTy)
Sk=Ak.T*Yk*b2+Ck.T*d2
rezRR=Ak.T*Yk*Ak-Sk*inv(d2.T*d2+b2.T*Yk*b2)*Sk.T+Qk
rezRR=Yk-rezRR
errZ=linalg.norm(rezRR)
i=i+1

end while
X0=Yk
S0=a.T*X0*b+c.T*d;
rezX0=X0-a.T*X0*a+S0*inv(Rg0+b.T*X0*b)*S0.T-c.T*c
errE=linalg.norm(rezX0)
j=j+1

end while
return X0

Algorithm 3 is implemented by the following Python function:
def DTRE−IQP−5(a,b1,b2,d1,d2,c,gam,n):

d=np.concatenate((d1, d2),axis=1)
b=np.concatenate((b1, b2),axis=1)
y0=np.concatenate((-gam*gam*np.identity(2), 0*np.identity(2)),axis=1)
y1=np.concatenate((0*np.identity(2), 0*np.identity(2)),axis=1)
Rg0=d.T*d+np.concatenate((y0, y1))
N=c.T*d; Q=c.T*c
W=Rg0+b.T*b; iW=inv(W)
bN=b.T*a+N.T
M1=np.concatenate((a-b*iW*bN, np.matlib.zeros((n,n))),axis=1)
M2=np.concatenate((N*iW*bN - Q, np.matlib.identity(n)),axis=1)
M=np.concatenate((M1,M2),axis=0)
bW=b*iW*b.T

iMAJOR, vol. 1, 2016 41

nW=N*iW*b.T
F1 = np.concatenate((np.matlib.identity(n)-bW, bW),axis=1)
F2 = np.concatenate((nW, a.T-nW),axis=1)
F=np.concatenate((F1,F2),axis=0)
H=inv(M-F)*(M+F)
w,v=eig(H)
rearrangement
ind = argsort(w)
v = v[:,ind]
u11=v[0:n,0:n]
u21=v[n:2*n,0:n]
the solution XS
XS=u21*inv(u11)
return XS

In this section we apply the introduced the procedures DTRE−IQP−3, DTRE−IQP−4
and DTRE−IQP−5 to compute the stabilizing solution to (1). We execute different numer-
ical simulations in order to compare the considered procedures. We use two variables tol
and eps for small positive numbers to control the accuracy of the computations. We use
tol = eps = 1.0e− 7.

Example 1. We construct the matrix coefficients of (1) as follows:
The matrix coefficients are:

A =

 −0.48 0. 0.16
1.6 0.8 0.

0.048 −3.2 0.64

 , B1 =

 −1.8048 0.5877
−0.3916 −0.0175
1.2778 0.5082

 , D1 =

(
0.35 −0.45
0.28 −0.13

)
,

C =

(
0.233 1.5 0.3
0.2 1.5 0.28

)
, B2 =

 0.4089 −1.0077
−0.1932 −0.4189
0.4144 −1.1287

 , D2 =

(
0.15 0.75
−0.18 −0.25

)
.

We apply the procedure DTRE−IQP−3 and the DTRE−IQP−4(a,b1,b2,d1,d2,c) to
compute the stabilizing solution to (1). The procedure DTRE−IQP−3 requires 3 main
iterations and it computes the stabilizing solution with ‖X̃(3)−R(X̃(3))‖ = 6.44e−15 < tol
with tol = 1.0e − 9; eps = 1.0e − 11. It computes the stabilizing solution for 0.96 seconds
for 100 runs.

The procedure DTRE−IQP−4 requires 3 main iterations and it computes the stabilizing
solution with ‖X̃(3) −R(X̃(3))‖ = 8.40e− 15 < tol with tol = 1.0e− 9; eps = 1.0e− 11. It
computes the stabilizing solution for 2.11 seconds for 100 runs.

The procedure DTRE−IQP−5 computes the stabilizing solutionXS with ‖XS−R(XS)‖ =
3.3e− 13. It computes the stabilizing solution for 0.032 seconds for 100 runs.

Example 2. We construct more general matrix coefficients. The matrix coefficients
D1, D2 to (1) as in Example 1. The matrix A is an n × n matrix, B1 and B2 are n × 2

iMAJOR, vol. 1, 2016 42

Table 1: Example 2. Results from 50 runs for each value of n.

DTRE−IQP−3 DTRE−IQP−4 DTRE−IQP−5

n It CPU max Err It CPU max Err CPU max Err

12 2 0.29s 9.5e-8 1 0.29s 9.3e-8 0.06s 1.5e-12
24 2 0.61s 8.6e-8 1 0.49s 9.7e-8 0.15s 2.2e-12
120 2 4.68s 9.2e-8 1 3.56s 8.4e-8 2.28s 8.8e-7
240 2 33.24s 4.2e-8 1 26.59s 6.16e-8 10.4s 2.1e-5
500 2 444.55s 4.6e-10 1 418.8s 5.66e-8 73.4s 1.7e-3

matrices and C is a 2× n matrix. They are described as follows:

An×n =


0.33 0 . . . 0

0 0.33 . . . 0
...

...
...

2.75 0 . . . 0.33

 , C2×n =

(
0 . . . 0

0.4 . . . 0.4

)
,

B1,n×2 =

 uniform(−1.5, 0.5) uniform(−1.5, 0.5)
...

...
uniform(−1.5, 0.5) uniform(−1.5, 0.5)

 ,

B2,n×2 =

 uniform(−1.5, 0.5) uniform(−1.5, 0.5)
...

...
uniform(−1.5, 0.5) uniform(−1.5, 0.5)

 .

We compute the stabilizing solution to (1) for different values of n. We execute 50
different runs for each value of n. We create new matrices B1, B2 for each run. The results
from experiments are presented in Table 1. In addition, the column ”CPU” presents the
CPU time for execution of the corresponding procedures for all 50 runs. We define the
variable maxErr = max1≤k≤50 ‖X̃(k0) −R(X̃(k0))‖ and we write the value of maxErr in
the column ”max Err”. Note that the procedures DTRE−IQP−3 and DTRE−IQP−4 stop
when maxErr ≤ tol. The column ”max Err” for the procedure DTRE−IQP−5 provides
the norm ‖XS − R(XS)‖, where XS is the computed stabilizing solution. In fact this
norm estimate the accuracy of this procedure. The results show that that the procedure
DTRE−IQP−5 is faster than other procedures. However, the procedure DTRE−IQP−5
achieves less accuracy than other procedures when the value of n increases (see the last
column of Table 1.

4 Conclusion

We have studied two iterative procedures for finding the stabilizing solution to discrete
time Riccati equation (1). Numerical experiments are carried out and the obtained results
are used for comparison purposes. In order to implement the numerical computations
we use the platform Anaconda with Python 2.7 which contains open source packages for

iMAJOR, vol. 1, 2016 43

scientific computations. Thus, the following conclusions might be outlined. On one hand,
the effectiveness of the considered iterative methods (7) - (9) and (10) - (11) is confirmed.
On the other hand the third procedure DTRE−IQP−5, based on the computation of the
eigenvalues and the eigenvectors of an 2n × 2n block matrix H, is found to be faster than
the iterative methods. This procedure uses least computational time for computing the
stabilizing solution. This conclusion is retained true in the case of Riccati equations with
large dimensions of matrix coefficients. Moreover, the third procedure computes the solution
XS the third procedure computes the solution XS under the rule when the dimension n of
XS increases then the computed accuracy decreases.

References

[1] A. Lanzon, Y. Feng, B. D. O. Anderson and M. Rotkowitz, Computing the Positive
Stabilizing Solution to Algebraic Riccati Equations with an Indefinite Quadratic Term
via a Recursive Method, IEEE Trans. Automat. Contr. , 53, 10, 2008, 2280–2291.

[2] Y. Feng, B.D.O. Anderson, An iterative algorithm to solve state-perturbed stochastic
algebraic Riccati equations in LQ zero-sum games, Systems and Control Letters, 59,
2010, 50–56.

[3] Y. Feng, B. D. O. Anderson, Weitian Chen, Solving Discrete Algebraic Riccati Equa-
tions: A New Recursive Method, Proceedings of joint 48th IEEE Conference on Deci-
sion and Control and 28th Chinese Control Conference Shanghai, P.R. China, Decem-
ber 16-18, 2009

[4] J. F. do Amaral, T. P. de Lima, M. S. Silva, Positive Solutions of a Discrete-time
System and the Leontief Price-Model, LNCIS, 2006, 341, 65–72, Springer, in Positive
Systems, C.Commault and N. Marchand (editors) Proceedings of the Second Multidis-
ciplinary International Symposium on Positive Systems.

[5] V. Dragan, S. Aberkane, I. Ivanov, An iterative procedure for computing the stabi-
lizing solution of discrete-time periodic Riccati equations with an indefinite sign, 21st
International Symposium on Mathematical Theory of Networks and Systems July 7-11,
2014. Groningen.

[6] V. Dragan, S. Aberkane, I. Ivanov, On computing the stabilizing solution of a class of
discrete-time periodic Riccati equations, International Journal of Robust and Nonlinear
Control, vol.25, 7, 2015, 1066-1093, doi: 10.1002/rnc.3131

[7] H.D. Ikramov, The Numerical Solution of Matrix Equations. Nauka, Moscow (1984)
(in Russian).

[8] G.H. Golub, C. F. Van Loan, Matrix Computations, forth edition, Johns Hopkins
University Press, 2012.

[9] I. Ivanov, Properties of Stein (Lyapunov) iterations for solving a general Riccati equa-
tion, Nonlinear Analysis 67, 2007, 1155–1166.

iMAJOR, vol. 1, 2016 44

[10] H. P. Langtange, A Primer on Scientific Programming with Python, University of Oslo,
2014, https://hplgit.github.io/primer.html/doc/pub/half/book.pdf, December, 2016.

[11] V.B. Larin, High-Accurasy Algorithms for Solving of Discrete Periodic Riccati Equa-
tion. Appl. Comput. Math., 6, 1, 2007, 10–17.

[12] https://www.continuum.io/ December 2016

	Introduction
	Two iterative methods
	Numerical experiments
	Conclusion

